Land surface temperature and emissivity retrieval from airborne hyperspectral thermal infrared hyperspectral data and application

نویسندگان

چکیده

æœºè½½é«˜åˆ†è¾¨çŽ‡é¥æ„Ÿæ˜¯é«˜åˆ†å¯¹åœ°è§‚æµ‹çš„é‡è¦éƒ¨åˆ†ï¼Œå ¶ä¸­é«˜åˆ†è¾¨çŽ‡é«˜å ‰è°±çƒ­çº¢å¤–æ•°æ®çš„å ‰è°±å‘å°„çŽ‡å¯ä»¥ç”¨äºŽçŸ¿ç‰©è¯†åˆ«ï¼Œæ˜¯å¯¹å¯è§å ‰é¥æ„Ÿåœ°ç‰©è¯†åˆ«çš„æœ‰æ•ˆè¡¥å ã€‚æœºè½½é«˜å ‰è°±çƒ­çº¢å¤–ä¼ æ„Ÿå™¨TASI(Thermal Airborne Hyperspectral Imager)在8—11.5 μmèŒƒå›´å† è®¾ç½®äº†32ä¸ªæ³¢æ®µï¼Œåœ¨å›½å† å¤–å¸¸è¢«ç”¨äºŽåœ°è¡¨çƒ­è¾å°„ä¿¡æ¯ã€çŸ¿äº§èµ„æºæŽ¢æµ‹ç­‰é¢†åŸŸã€‚æœ¬æ–‡åˆ©ç”¨2018-10åœ¨æ–°ç–†å¯Œè•´åŽ¿ç ”ç©¶åŒºçš„TASIèˆªç©ºé£žè¡Œæ•°æ®ï¼Œé¦–å ˆåŸºäºŽå†åˆ†æžå¤§æ°”å»“çº¿NCEP数据与MODTRAN实现了TASIé«˜å ‰è°±çƒ­çº¢å¤–æ•°æ®çš„å¤§æ°”æ ¡æ­£ï¼Œå¹¶åœ¨åŸºç¡€ä¸Šå‘å±•äº†æ¸©åº¦ä¸Žå‘å°„çŽ‡åˆ†ç¦»æ–¹æ³•TES(Temperature and Emissivity Separation methodï¼‰åæ¼”ç ”ç©¶åŒºåœ°è¡¨æ¸©åº¦ä¸Žå‘å°„çŽ‡ï¼Œé‡‡ç”¨å¤šæ³¢æ®µçƒ­è¾å°„è®¡CE312测量的地面发射率对反演结果进行了有效验证,结果表明波长大于9.6 μm的波段的发射率误差约为0.01。最后,结合反演的TASIå‘å°„çŽ‡å ‰è°±æ›²çº¿ï¼Œé‡‡ç”¨å ‰è°±è§’åº¦åŒ¹é æ–¹æ³•æå–äº†ç ”ç©¶åŒºé«˜å²­çŸ³çš„ç©ºé—´åˆ†å¸ƒã€‚ç ”ç©¶å·¥ä½œæ¶‰åŠçš„ç›¸å ³ç®—æ³•ä¸Žåº”ç”¨æˆæžœå¯ä¸ºæ˜Ÿè½½é«˜åˆ†è¾¨çŽ‡çƒ­çº¢å¤–è½½è·æ•°æ®çš„åº”ç”¨æä¾›äº†ç›¸å ³å‚è€ƒã€‚

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Surface Temperature and Emissivity Retrieval from Field-Measured Hyperspectral Thermal Infrared Data Using Wavelet Transform

Currently, the main difficulty in separating the land surface temperature (LST) and land surface emissivity (LSE) from field-measured hyperspectral Thermal Infrared (TIR) data lies in solving the radiative transfer equation (RTE). Based on the theory of wavelet transform (WT), this paper proposes a method for accurately and effectively separating LSTs and LSEs from field-measured hyperspectral ...

متن کامل

Practical retrieval of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data.

A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14 μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of th...

متن کامل

Land Surface Temperature Retrieval Using Airborne Hyperspectral Scanner Daytime Mid-Infrared Data

1 University of Chinese Academy of Sciences, Beijing 100049, China; E-Mails: [email protected] (E.Z.); [email protected] (H.H.) 2 Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China; E-Mail: [email protected] 3 College of Geography and Planning, Ludong University, Yantai 264025, China; ...

متن کامل

Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data.

Sensitivity analysis of temperature-emissivity separation method commonly applied to hyperspectral data to various sources of errors is performed in this paper. In terms of resulting errors in the process of retrieving surface temperature, results show that: (1) Satisfactory results can be obtained for heterogeneous land surfaces and retrieval error of surface temperature is small enough to be ...

متن کامل

Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2021

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20219392